AMERICAN UINVERSITY OF BEIRUT
FACULTY OF ENGINEERING AND ARCHITECTURE EECE 460 Control Systems

Fall 2004-2005
Quiz II SOLUTION
Prof. Fouad Mrad
1.5 Hours, January 7, 2005

Total of 100 points; Open Book Exam, 3 pages YOU MUST RETURN THIS EXAM WITH YOUR ANSWER BOOKLET
Problem 1 (30 points):
Consider the system shown in the Figure below.

Control system with unity feedback
a) Approximate on a semi-log paper the Bode diagram of the open-loop transfer function $G(S)$.

Phase Graph

b) Based on part (a), approximate graphically the phase margin and gain margin
The phase margin, gain margin, phase crossover frequency, and gain crossover frequency values are

G.M. Frequency	Gain Margin
4.0148	9.9404
P.M. Frequency	Phase Margin
0.4426	103.6573

c) Using the results of part (b), is the Closed-loop transfer function stable? Justify.
System is stable since the open loop transfer function is Minimum Phase and the P.M. and G.M. are positive.

Problem 2 (30 points):
Consider the system shown in the Figure below.

Control System with series controller
Let us assume that the compensator $G_{c}(s)$ is a lag-lead and has the following form:

$$
G_{c}(s)=K_{c} \frac{\left(s+\frac{1}{T_{1}}\right)\left(s+\frac{1}{T_{2}}\right)}{\left(s+\frac{\beta}{T_{1}}\right)\left(s+\frac{1}{\beta T_{2}}\right)}
$$

The uncontrolled open loop system bode plots with $K_{c}=100$ corresponding to the static velocity error constant K_{v} is $20 \mathrm{sec}^{-1}$ are

a) Design the compensator (if needed) such that phase margin is at least 60°, and gain margin is not less than 8 dB .
From this Bode diagram we find the phase crossover frequency to be $\omega=2.25 \mathrm{rad} / \mathrm{sec}$. Let us choose the gain crossover frequency of the designed system to be $\omega=2.25 \mathrm{rad} / \mathrm{sec}$ so that the phase lead angle required at $\omega=2.25 \mathrm{rad} / \mathrm{sec}$ is 60°.

Once we choose the gain crossover frequency to be $2.25 \mathrm{rad} / \mathrm{sec}$, we can determine the corner frequencies of the phase lag portion of the lag-lead compensator. Let us choose the corner frequency $1 / T_{2}$ to be one decade below the new gain crossover frequency, or $1 / T_{2}=0.255$. For the lead portion of the compensator, we first determine the value of β that provides $\varphi_{m}=65^{\circ}$, $\left(5^{\circ}\right.$ added to 60°.) Since

$$
\sin \phi_{m}=\frac{1-\frac{1}{\beta}}{1+\frac{1}{\beta}}=\frac{\beta-1}{\beta+1}
$$

We find $\beta=20$ corresponds to 64.7912°. Since we need 65° phase margin, we may choose $\beta=20$. Thus

$$
\beta=20
$$

Then, the corner frequency $1 /\left(\beta T_{2}\right)$ of the phase lag portion becomes as follows:

$$
\frac{1}{\beta T_{2}}=\frac{1}{20 \times \frac{1}{0.225}}=\frac{0.225}{20}=0.01125
$$

Hence, the phase lag portion of the compensator becomes as

$$
\frac{s+0.225}{s+0.01125}=20 \frac{4.4444 s+1}{88.8889 s+1}
$$

For the phase lead portion, we first note that

$$
G_{1}(j 2.25)=10.35 \mathrm{~dB} .
$$

If the lag-lead compensator contributes -10.35 dB at $\omega=2.25$ rad/sec, then the new gain crossover frequency will be as desired. The intersections of the line with slope $+20 \mathrm{~dB} / \mathrm{dec}$ [passing through the point (2.25,-10.35 dB)] and the 0 dB line and -26.0206 dB line determine the corner frequencies. Such intersections are found as $\omega=0.3704$ and $\omega=7.4077 \mathrm{rad} / \mathrm{sec}$, respectively.

Thus, the phase lead portion becomes

$$
\frac{s+0.3704}{s+7.4077}=\frac{1}{20}\left(\frac{2.6998 s+1}{0.1350 s+1}\right)
$$

Hence the compensator can be written as
$G_{c}(s)=100\left(\frac{4.4444 s+1}{88.8889 s+1}\right)\left(\frac{2.6998 s+1}{0.1350 s+1}\right)$

$$
=100\left(\frac{s+0.225}{s+0.01125}\right)\left(\frac{s+0.3704}{s+7.4 .077}\right)
$$

Then the open-loop transfer function $G_{c}(s) G(s)$ becomes as follows:

$$
G_{c}(s)=100\left(\frac{4.4444 s+1}{88.8889 s+1}\right)\left(\frac{2.6998 s+1}{0.1350 s+1}\right) \frac{1}{s(s+1)(s+5)}
$$

$$
=\frac{1199.90 s^{2}+714.42 s+100}{12 s^{5}+161.0239 s^{4}+595.1434 s^{3}+451.1195 s^{2}+5 s}
$$

b) Verify the effectiveness of the controller in meeting the desired specs.

From this diagram we find that the phase margin is approximately 60° and gain margin is 14.35 dB . The static velocity error constant is $20 \mathrm{sec}^{-1}$.

Problem 3(40 points):
Consider the servo system described by a state model LTI. Matrices A, B, and C are given as:

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -5 & -6
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

The nonzero output reference is r(t).
a) Is the system fully controllable? Verify.
$Q=[B A B A 2 B]$ has full rank, system is controllable.
b) Determine if possible the feedback gain constant vector of a Pole Placement Controller using state feedback [k1, k2, k3] such that the desired closed loop poles are:

S1 = - $2+j 4 \quad S 2=-2-j 4 \quad S 3=-10$
we assume that all 3 states are available for feedback
$K=\left[\begin{array}{lll}200 & 55 & 8\end{array}\right]$
c) Is the system fully observable? Verify.
$O=[C$ CA CA2]T full rank, system is observable
d) Realistically only the output $y(t)$ is available for feedback. Design an observer (if possible) to estimate online the internal states using only system output y(t) and input u(t).

Since desired poles of Observer are not supplied, we need to choose them (non-uniquely) much faster (5x) than the system in order for the observer estimation to converge faster than controlled process in need of good estimation. Hence, for every choice there corresponds a gain vector.

